
Distributed transactions:
I Distributed atomicity
I Distributed isolation
I Profit! (distributed)
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All reliable distributed systems are alike
each unreliable is unreliable in its own way.
Kyle Kingsbury and Leo Tolstoy.

Transactions in shardman

2



Distributed transactions:
I Atomicity: 2PC
I Isolation: Clock-SI
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Two-phase commit is the anti-availability protocol.
P. Helland. ACM Queue, Vol. 14, Issue 2, March-April 2016.
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So what we can do about it?
I Make 2PC fail-recovery tolerant: X3PC, Paxos Commit
I Back-up partitions!
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Spanner mitigates this by having each member be a Paxos group,
thus ensuring each 2PC “member” is highly available even if some
of its Paxos participants are down.
Eric Brewer.
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Profit? Not yet!

Transactions in shardman: isolation

13



Transactions in shardman: isolation

14



postgres_fdw.use_twophase = on
BEGIN;
UPDATE holders SET horns -= 1 WHERE holders.id = $id1;
UPDATE holders SET horns+= 1 WHERE holders.id = $id2;
COMMIT;
SELECT sum(horns_count) FROM holders;
-> 1
-> 2
-> 0
-> -2
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MVCC in two sentences:
I UPDATE/DELETE create new tuple version, without in-place

override
I Each tx gets current database version at start (xid,

csn,timestamp) and able to see only appropriate versions.

acc1
ver 10: {1, 0}
ver 20: {1, 2}
ver 30: {1, 4}

––––– snapshot = 34 –––––
ver 40: {1, 2}
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BEGIN
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Do some serious stuff
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COMMIT
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BEGIN
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Do some serious web scale stuff
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COMMIT
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Clock-SI slightly changes visibility rules:
version = timestamp

I Visibility’: Waits if tuple came from future. (Do not allow
time-travel paradoxes!)

I Visibility”: Waits if tuple already prepared(P) but not yet
commited(C).

I Commit’: Receives local versions from partitions on Prepare
and Commits with maximal version.
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And that’s it! Thank you.
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