
Distributed transactions:
I Distributed atomicity
I Distributed isolation
I Profit! (distributed)

Transactions in shardman

All reliable distributed systems are alike
each unreliable is unreliable in its own way.
Kyle Kingsbury and Leo Tolstoy.

Transactions in shardman

2

Distributed transactions:
I Atomicity: 2PC
I Isolation: Clock-SI

Transactions in shardman

3

Transactions in shardman: 2PC

4

Two-phase commit is the anti-availability protocol.
P. Helland. ACM Queue, Vol. 14, Issue 2, March-April 2016.

Transactions in shardman: 2PC

5

Transactions in shardman: 2PC

6

Transactions in shardman: 2PC

7

Transactions in shardman: 2PC

8

Transactions in shardman: 2PC

9

So what we can do about it?
I Make 2PC fail-recovery tolerant: X3PC, Paxos Commit
I Back-up partitions!

Transactions in shardman: 2PC

10

Transactions in shardman: 2PC

11

Spanner mitigates this by having each member be a Paxos group,
thus ensuring each 2PC “member” is highly available even if some
of its Paxos participants are down.
Eric Brewer.

Transactions in shardman: 2PC

12

Profit? Not yet!

Transactions in shardman: isolation

13

Transactions in shardman: isolation

14

postgres_fdw.use_twophase = on
BEGIN;
UPDATE holders SET horns -= 1 WHERE holders.id = $id1;
UPDATE holders SET horns+= 1 WHERE holders.id = $id2;
COMMIT;
SELECT sum(horns_count) FROM holders;
-> 1
-> 2
-> 0
-> -2

Transactions in shardman: isolation

15

MVCC in two sentences:
I UPDATE/DELETE create new tuple version, without in-place

override
I Each tx gets current database version at start (xid,

csn,timestamp) and able to see only appropriate versions.

acc1
ver 10: {1, 0}
ver 20: {1, 2}
ver 30: {1, 4}

––––– snapshot = 34 –––––
ver 40: {1, 2}

Transactions in shardman: isolation

16

BEGIN

Transactions in shardman: isolation

17

Do some serious stuff

Transactions in shardman: isolation

18

COMMIT

Transactions in shardman: isolation

19

BEGIN

Transactions in shardman: isolation

20

Do some serious web scale stuff

Transactions in shardman: isolation

21

COMMIT

Transactions in shardman: isolation

22

Clock-SI slightly changes visibility rules:
version = timestamp

I Visibility’: Waits if tuple came from future. (Do not allow
time-travel paradoxes!)

I Visibility”: Waits if tuple already prepared(P) but not yet
commited(C).

I Commit’: Receives local versions from partitions on Prepare
and Commits with maximal version.

Transactions in shardman: isolation

23

And that’s it! Thank you.

Transactions in shardman

24

