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Abstract

While the B-tree (or the B -tre is the most popular index
structure in disk-based relational database systems, the T-
tree has been widely accepted as a promising index
structure for main memory databases where the eitire
database (or most of them) resides in the main memory.
However, most work onthe T-treereported in the literature
did na take @ncurrency oontrol into consideration. Inthis
paper, we report our study on the performance of the main
memory database index structure that allows concurrent
accesss of multiple users. Two concurrency ntrol
approaches over the T-treeare presented. Theresults of a
simulation study indicate that the B-link treg a variant of
the widely used B-treeindex will outperform the T-treeif
concurrency control is enforced. Thisis dueto the fact that
concurrency ntrol over a T-tree requires more lock
operations thanthat of a B-link treg and the overhead d
locking and uthockingis high.

1. Introduction

For the past decade, an important assumption o
database research and development is that most of the data
of a database ae on dsk. With the alvent of the hardware
techndogy, computer systems with main memory size in
the order of magnitude of gigabytes are aailable
nowadays. The increasing availability of large and
relatively chegp memory makes it posdble to have main
memory databases (MM DB) where dl data reside in main
memory, which  provides significent additional
performance benefits as shown in [8, 16]. In fad, MM DB
has been receving the atention d database reseachers for
the past decale [6, 1, 3, 10, 17, 4].

When the entire database resides in the main memory,
related techniques developed under the assumption o disk
I/0O as the main cost of database operations shoud be re-
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examined. Among the others, index structures that affec
the overall system performance heavily has been ore of the
reseach focuses. In the ealy 90s, Lehman and Carey
proposed the T-tree & an index structure for main memory
database [15]. Because of its good overall performance, the
T-tree has been widely accepted as a mgjor MM DB index
structure. It was adopted by severa systems, including the
main memory relation manager (MMM) of the Starburst
system from IBM Almaden Reseach Center [17] and the
Dali system fromthe AT& T Bell Laboratories[11, 4, 22].

The work reported in this paper is motivated by our
observation that, in contrast to a large anourt of research
work on the concurrent B-tree [5, 19, 23, 18, 20, 12, 13,
24, little work has been reported on the study of the
concurrent T-tree [14, 17, 8]. As pointed by Lehman et al.
[17] and Gottemukkala & al. [8], oncethe I/O bottlenedk of
paging datainto and out of the main memory are removed,
some other factors such as latching and locking dominate
the st of database acces Sincethe concurrent accessof
the T-tree may require latching and locking intensively, the
performance of the T-tree should be somehow affeded in
such an environment. Although previous work has
demonstrated that the T-tree provides a better performance
than the B-tree [15], the performance study did na
consider the dfeds of concurrent accessof the indexes.

In this dudy, we have investigated the performance
issie of the T-tree when the concurrent access from
multiple users is alowed. Motivated by the good
performance of the B-link tree[19, 23, 18], we modified
the T-tree into the T-tail tree The T-tall tree dlows an
extra tree node to be linked to a T-tree node when the T-
tree noce overflows, to delay the tree rotating operation.
Two concurrency control mechanisms were propased. A
performance study was conducted to compare the
performance of the T-tail tree and the B-link tree To ou
surprise is that the T-tail tree, and hence the T-tree, does
not provide a better performance than the B-link tree
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because of the high cost of locking and unlocking required
to enforce cncurrency control.

The rest of this paper is organized as follows. Sedion 2
describes the T-tail tree index structure and its concurrent
access algorithms. A simulation model, experiments
conducted, and the results are given in Sedion 3. Findly,
Sedion 4concludes the paper.

2. T-tree, T-tail tree and concurrent
oper ations

In this dion, we first briefly describe the structure of
the T-tree index and its variation, the T-tail tree
Afterwards, we propcse two mechanisms that allow
concurrent operations including both seach and
modificaion onthe treewhil e maintaining the cnsistency.

2.1. T-treeand T-tail tree

The T-tree [15], rooted in the AVL tree[2] and the B-
tree [5], is a balanced binary tree whose nodes contain
more than one item. Figure 2.1 (a) depicts a T-node, a node
of aT-tree. A T-node mnsists of anumber of data painters,
threedata fields, 1 parent pointer, 0-1 tail pointer, and 0-2
child pdnters. An internal T-node has two child pdnters
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pointing to its left and right subtrees, respedively. A leaf
T-node has no child pointers. A T-node may have only one
child pointer and is cdled half-leaf node. The data pointers
in a T-node point to the wrrespondng data entriesin the
memory, thus through the data pointers, the mrresponding
data entries and their keys can be accesed. There ae dso
two spedal fields minK and maxK in ead T-node that store
the minimum and maximum key vaues in the node,
respedively. For anode T and a value K, if minK < K <

maxK, then we say that node T bounds the value K.
Ancther spedal datafield isthe balancefador, bf, whichis
the value of the right subtree height minus the left subtree
height. The height of a treeis defined to be its maximum
level, the length of the longest path from the roct to a led
node. Since aT-tree is a balanced hbinary treg the balance
fador, bf, can only be +1, 0, or —1. For ead internal node
A, there exists a arrespondng led (or half-led) node that
holds a data pointer to the data entry with a key value that
is the predecessor to the minK of A. This node is named the
predecessor of A. Similarly, the node halding the data
pointer to the data entry with a key vaue that is the
successor to maxK of A, is cdled the successor of A.

A minimum count and a maximum count are ssciated
with a T-tree. Internal nodes keep their occupancy (i.e. the
number of data pointers in the node) in this range. When
the number of data pointers in a node is snaller than the
minimum count or larger than the maximum court, the
node is sid to be underflow or overflow, respectively. In
general, a nock is not full. That is, the number of data
pointersin it is kept lessthan the node size, the maximum
number of data pointers a node can have. During the
insertion qoeration, the crrespondng data pointer will be
inserted into the node that bounds the key value of the
entry. When a data pointer isto be inserted into a node that
is full, it may cause inserting a new node into the tree
Inserting a new node not only requires redistributing data
pointers between the overflowed node and the new nodk,
but also require moving the nodes around, i.e., to rotate the
tree to ke the tree balance Similarly, deletions may
cause node underflow or empty, which may give rise to the
deletion of anoce. Deleting a node may also cause the tree
to be rotated for keguing the balance

Frequent tree rotations will degrade system
performance In observation of that tree rotations are
induwced by node overflow and underflow, which are
consequences of insertion a deletion in nodes with fixed
size we dlow the node sizeto be dhanged dynamicdly. In
our implementation, aT-node is all owed to have one T-tail,
in which some data pointers can be inserted. A T-tail beas
the same structure & a T-node, but only its data pointer
storage spaceis used. During an insertion operation, if the
nodeisfull, atail iscreaed for it, andthen al insertions on
the node can be operated onitstail. A T-nodeis sid to be
completely full if both the T-node itself anditstail are full.
Fully tail will be inserted into the tree & a new T-node
later. If a deletion causes the node underflow, then data
pointersin its tail will be moved into it and empty tail will
be deleted. Note that data pointersin the T-node and its tail
are sorted by the key values of the @rresponding data
entries. Also minK and maxK of the T-node should bound
al the key vaues of the mrresponding data entries with
pointers in the T-node and its tail. We name such index
structure T-tail tree. A T-tail isgivenin Figure 2.1 (b). Itis
expeded that our implementation will reduce the



posdhility of tree rotations, hence incresing the
performance[21].

To enforce concurrent access over a T-tail treg we
employ a locking mechanism. For simplicity, we use only
three types of locks, the shared lock (S-lock), the shared
and intention exclusive lock (SIX-lock), and the exclusive
lock (X-lock), which were originally used in hierarchicd
locking protocols [9]. Their compatibility relations are the
same & in the original work. That is, shared locks are
compatible with themselves and shared and intention
exclusive locks. Exclusive locks are incompatible with
themselves and all other locks. Shared and intention
exclusive locks are mmpatible with shared locks but
incompatible with themsel ves.

We propcse two approaches to enforce @ncurrent
accessover a T-tail tree oneis pesamistic and the other is
optimistic. For the pessmistic goproad, it is assumed that
conflicts among tree operations are inevitable and lead to
undesirable situations, such as creating inconsistent data or
dealock. Each concurrent operation tries to prevent the
happening of such situations. In this approach, seach
operation wse lock-coupling in their descent from the roat
to the bounding nodk, the node that bounds the key value of
the data entry in the operation. During update operation
(insertion a deletion), all nodes on the way from the parent
of the critical noce to the bounding node ae locked using
SIX-locks to prepare for apossble tree rotation. A critical
node is the nearest ancestor of the bourding node whase
balance fador equals to 1 a —1. If a tree rotation does
occur later, al these SIX-locks will be mnverted to X-
locks. Actualy, treerotations rarely happen over the T-tail
tree. Thus this approach hand es concurrent access over the
tree in a pesdmistic way. In the other extreme, the
optimistic goproach assumes that concurrent operations
over a T-tail tree do na interfere with ead ather, and it
allows operations to complete withou worrying about
possble onflicts. If the boundng node is completely full
during insertion, the whale treewill be exclusively locked
by the operation and the treeis fixed. During treefixing, all
the T-tails are inserted to its siccesor as a T-node, and
empty nodes and tails are deleted. In the following two
sedions, we will present the dgorithms for the two above-
mentioned approades.

2.2. The pessimistic approach

As the T-tree, and hencethe T-tail treg is evolved from
the AVL tree the pessmistic concurrent operations over
them are similar to those on the AVL tree [7]. A search
gets an S-lock ontheroat first. Then it seaches down from
the root to the bounding node and lock-couples its way
with S-locks. Finally it seaches the bounding node. During
an update operation, the updater first takes the roct as a
potential criticd node and gets an SIX-locks onit. Then it
seaches down from the root and gets an SIX-lock on eadh

node on the way. If a new node whose balancefador is not

equal to 0 is found, then this node is taken as the potential

criticd node. All SIX-locks on the ancestors of the parent

of this potential critical node ae relessed. Finaly, an X-

lock should be obtained on the boundng node and the

operation is performed on it. Later on, if a tree rotation
occurs, al the SIX-locks on the nodes from the parent of
the criticd node to the bounding rode will be mnverted to

X-locks and the tree is rotated. The dgorithms are

described in the followings.

Search. The @ncurrent seaching in a T-tail treeis
similar to searching in an AVL tree The main differences
are that the locking mechanism has to be used and the tail
has to be seached. The dgorithm works as follows:

(1) Theseach always darts at theroct of the tree and an
S-lock shoud be gotten ontheroot first.

(2) Seach down from the root and lock-couple the way
using S-locks.

(3) If the seach key value is less than the minK of the
current node, then search down its left-subtree Else,
if the seach key value is greder than the maxK of the
current node, then seach down its right-subtree Else,
seach the arrent noce anditstail (if any).

(4) After the seach is performed, the Slock on the
current node should be released.

The seach fails when a node and its tail (if any) are
seached and the mrrespondng data pointer canna be
found or when a noce that bounds the seach key value
cannot be found

Insertion. The insertion operation wses SIX-locks and
X-locks to enforce @ncurrency control. It begins with a
seach to locate the bounding nocke. If the boundng noceis
not completely full, the data pointer to the data entry is
inserted into the bounding node. Else, if the boundng node
is completely full, then its tail will be removed from the
bounding node and inserted into its successor as a new T-
node. The pointer is inserted into either the origina
bounding nocde or the new T-node, depending on which ore
bounds its key value. The balance of the treeis cheded
then. If the T-tail tree is unbalanced as a consequence of
the insert operation, a tree rotation will be performed.
During this process many locking, unlocking, and lock
converting steps are involved. We describe the insertion
algorithm in more details as foll ows:

(1) The search starts at the root of the tree an SIX-lock
is placed on the roat, and takes the root as a potential
critica node.

(2) Seach down the treefor the bourding node. During
this process, all nodes from the parent of the aiticd
node to the bounding node ae locked using SIX-
locks. If some node whose balance fador is nat 0 is
fourd on the way, this node becomes the potential
critica node. All the SIX-locks onthe ancestors of the
parent of this new potentia criticd node will be
released. If the seach exhausts the tree ad no noe@



bounds the key value of the data entry, the last node
onthe search path is asdgned as the bounding node.

(3) If the bounding node is found and is not completely
full, the SIX-lock on the bourding node is converted
to the X-lock and the wrresponding data pointer is
inserted into it. Release dl the locks and terminate.

(4) If the boundng node is completely full, then seach
for the succesor of the boundng noce like in (2) but
the lock on the bounding nock is kept. Then the SIX-
locks on the bounding node and the successor are
converted into the X-locks. The tail of the boundng
node is moved off and inserted into the successor as a
led node. The data pointer will be inserted into the
bounding node or the new child node, depending on
which ore bound the seached key value. Then the
balance of the treeis chedked.

(5) If a new led was added, then ched the tree for
balance by following the path from the led to the
criticd node. For ead node on the way from the led
to the aiticd node, if the two subtrees of anode differ
in depth by more than two levels, then the SIX-locks
onthe nodes from the parent of the aiticd node tothe
current node ae onverted into X-locks and a tree
rotation must be performed. Once one rotation is
done, the treeis rebalanced. Release dl the locks and
terminate.

Deletion. The deletion agorithm works smilar as the
insertion algorithm in the way of locking and processng.
During the operation, the data pointer to be deleted is
seached for, the operation is performed, and then
rebalancing is dore if necessry. If the deletion does not
cause an urderflow, then simply delete the data pointer. If
it causes an underflow in an internal node, then barow the
data pointer to the data entry with maximum key value in
its predecesr. Otherwise, if a deletion makes ome led
node empty, the node will be deleted, the tree shoud be
rebalanced, and rotated if necessary. The dgorithm works
asfollows:

(1) and(2) are the same & in the insertion algorithm. If
the boundng node canat be found, end with failure.

(3) If the boundng node is found and the deletion will
not cause it underflow, the SIX-lock on the boundng
node onverted into the X-lock. The data pointer to
the wrrespondng data eitry is deleted from it.
Release dl the locks and terminate.

(4) If the bounding node is an internal node ad the
deletion will makes it underflow, then seach for the
predecesor of the bourding node like in (2) but the
lock on the bourding node is kept. All the SIX-locks
on the nodes from the bounding rode or the parent of
the aitical node to the predecessor are mnverted into
the X-locks. The data pointer to the data entry with
the maximum key value in the predecessor is moved
to the boundng node. If the predecessor is aleaf and

the deletion makes it empty, then the operation deletes
it and the balance of the treeis chedked.

(5) If the boundng node is not an internal and the
deletion makes it empty, then delete the led node or
replace the half-led with its left child. Then the
balanceof the treeis cheded.

(6) If aled wasremoved, then ched the treefor balance
asin (5) of theinsertion agorithm.

The treebalancing and rotating are the same a&in [15],
thus we omit it here.

2.3. Optimistic approach

For the optimistic approach, at most one noce is locked
at atime by an upchte operation, and search operation daes
not lock any node & all. It allows empty nodes existing in
the treetemporarily. Under such condition, operations are
running with maximum concurrency. Only when we try to
insert a data pointer into a completely full T-node, the
whole treewill be exclusively locked by the operation and
the tree is fixed. During the fixing phase, all the tail nodes
creded after the last treefixing are ajusted; empty nodes
and tails are deleted. Treebalance is cheded and rotation
isdoneif necessary.

In this approadh, some additional data structures are
used. One is the fixing flag. It is a logicd variable to
indicate whether the treeis being fixed (fixing flag equals
to TRUE) or normal used (fixing flag equals to FALSE).
The count is used to record the number of operations
currently operating over the tree A semaphare is used to
protea fixing flag and count from being operated by more
than ore operation at atime. Three node pointer pools are
used. One is the New Node Pod (NNP) that is used to
record the newly creaed tails after the last treefixing. The
seoond one is the Dedlocaed Node Pool (DNP) that is
used to record the empty tails during the normal tree
operations. The third one is the Empty Node Pool (ENP)
that is used to record the empty T-nodes.

Search. The seach operation is quite straightforward.
Before an operation performs on the tree it will first
aauire asemaphore and chedk the fixing flag. If the fixing
flag is st to TRUE, then the operation releases the
semaphare and waits. Otherwise, it increases the count and
releases the semaphore. It then starts from the roaot and
seaching for the bounding rode. If the data entry has been
found, then it aquires the semaphae and deaeases the
count. After releasing the semaphore, the operation ends
with success Otherwise, it fails.

Insertion. The dgorithm works as follows:

(1) The insertion operation seaches for the boundng
node in the same way as the seach ogeration.

(2) If the bounding noce is found, then get an X-lock on
it. If the node is not completely full, then insert the
correspording data painter into it. If there is a newly
creded tail, record it in the NNP. After releasing the



lock and ceareasing the murt, the operation ends with
success

(3) If the node is completely full, then release the lock
and ceaease the munt. After setting the fixing flag to
TRUE and releasing the semaphare, wait until no
operation performs on the tree Then fix the tree
Finally, after resetting the fixing flag to FALSE,
resume the operation.

(4) If the seach exhausts thetree aad no no@ bounds the
key value of the data entry, then the last node on the
seach path is locked using X-locks. If it is not
completely full, then processit likein (2). Otherwise,
conduct work asin (3).

Deletion. The deletion works in a straightforward
fashion. After finding the boundng node, it deletes the
corresponding data pointer diredly. When the deletion
empties a T-node, it is recorded into the ENP. If the
deletion makes the tail of the node empty, then record the
tail node to the DNP to process it in later treefixing. Note
that the tail canna be deleted immediately since there may
be other operations working a it. It works as follows:

(1) Thedeletion operation searchesfor the boundng node
in the same way as the search operation.

(2) If the bounding noce is found, then get an X-lock on
it. Delete the corresponding data pointer from the
node. If the deletion makes a T-node empty, it is
recorded in the ENP. If the deletion empties its tail,
then record the tail into the DNP. After releasing the
lock and ceaeasing the count, end with success

(3) If thebourding node canat be found, then release the
lock and deaease the count. End with failure.

Tree Fixing. The tree fixing algorithm rearanges the
tree. It checks the nodes recorded in the NNP to seeif the
node can be merged in some way. Empty nodesin the DNP
and ENP are deleted. Check the tree balance and conduct
tree rotation if necessary. The dgorithm works as follows:
(1) For ead noctinthe NNP, try to mergeit with its host

node. If @l the data pointersin the tail can be merged
into its host node, then merge them into the host node
and the tal is deleted. Else, if the taill canna be
merged into its host node, then insert it to the
succesr of its host node. Chedk the treefor balance
androtate the treeif necessry.

(2) For eath nade in the ENP, if it is empty, then replace
it with its predecessor and celete the predecessor.
Ched the tree for balance ad rotate the tree if
necessry.

(3) For ead node in the DNP, if it is empty, then delete
it.

3. A Performance study
In order to investigate the performance of concurrent

access over the T-tail tree, a performance study was
conducted. We implemented the two concurrency control

approaches described in the previous sdion. As a
comparison, operations over the B*-tree [5] and the B-link
tree algorithms [23] were dso implemented. Two groups of
experiments were anducted. The first group dedicated to
the performance of operations over the T-tail tree ad the
B*-tree withou concurrency control, and the second one
studied their performance with concurrency controls. The
algorithms were implemented in C++. All experiments
were @nducted on a Pentium 233 computer with 64M
memory, running Linux OSin the single user mode.

3.1. Simulation model

Simulation Process. The simulationwork consisted of a
number of experiments. Each experiment conducted in
three steps. In the first step, atree was built (for different
experiment, the treemight be aT-tail, B*, or B-link tre€) to
provide basic data structure for the experiment. A set of
operations (seaches, insertions, and deletions) is then
performed onthe tree Finally, the experiment results were
collected.

Tree Initialization. Before eab simulation, a treewas
built by inserting 0.5M (Million) data pointers to data
entries, whase keys were randamly seleded from the key
spaceof 1 to IM. To make the tree more redistic, 0.5M
update operations were then performed. In those operations
insertion and deletion had even distributions, thus about
0.25M insertions and the same number of deletions were
performed on the tree.

TERMINALS

COMMIT

Figure 3.1 Simulation model

Simulation Model. Our model was a dosed-queuing
model as outlined in Figure 3.1. There are a number of
terminals and eat one performs ome operations on the
tree. Each terminal isues arequest, which isone of thetree
operations (seach, insert, and delete). The request is
inserted into the Waiting CPU Queue (WCQ). The CPU is
scheduled using a round-robin dscipline withou
preenption. When the CPU becomes freeg the first request
in the WCQ is asdsgned to it. If an operation canna be



finished in around it will be sent to the WCQ again. After
an operation is committed, the terminal waits for sometime
and submits the next operation again.

For concurrent operations with concurrency control, a
lock manager [9] is used to maintain the locks. An
operationis blocked if it cannot obtain the required lock on
some resource. Then it is sent to the Waiting Lock Queue
(WLQ). It will be re-sent to the WCQ when the required
lock isavailable.

M easur ements. During the experiments, we mentioned
the processng time, the treeheight, and the number of tree
nodes. The processng time is the total time requested to
complete acertain number of operations.

3.2. The CPU cost for each basic operation

A tree operation consists of a number of basic
operations such as data comparison, pointer assgnment,
arithmetic operation, acquisition and release of semaphare,
and locking and urlocking. Since dl tree operations are
performed in memory, the processng times for eat of
these basic operations dedde the st of ead tree
operation. Thus it is important to identify the most
expensive basic operation. We conducted a set of simple
tests to measure the CPU costs for the five basic operations
mentioned above.

Table 3.1 CPU cost for each operation

Basic operations Time (x10°seconds)

Data Comparison 128
Pointer Assignment 4
Arithmetic Operation 55

Acquire and Release semaphore|8947
Lock and Unlock 17466

We enployed a main function that looped to exeaute
ead operation 1giga (10°) times. Also, an empty function
was cdled those times © as to measure the mst of a
function cdl. Finadly, the st of the function cdl was
subtraded from the wst of the exeadtions of ead
operation. The net cost of ead operation is listed in Table
31

3.3. Experiment results

The experiments were dasdfied into two groups. In the
first group we investigated the performance of the T-tail
tree and the B'-tree withou concurrency control. The
performance of concurrent accesses on the T-tail tree and
the B-link tree was studied in the second group d
experiments.

Performance of Tree Operations without
Concurrency Control. In this group d experiments,
operations were @mpleted one by one without

concurrency. Only one operation was working on the tree
a any time. Under such settings, the dgorithms operated
onthe T-tail treewere almost the same & the original ones
proposed in [15]. The results of the T-tail treeare denoted
as the T-tail treein the figures. For the B-tree, we used the
standard B*-tree dgorithms in [5] (denoted as the B'-tree
in the figures). The purpose of this group d experiments
was to study the processng time, the number of nodes, and
the height of atreewhile there was no concurrency control
enforced. Theresults are reported as foll ows.

Figure 3.2 presents the total processng timerequired for
0.5M (5x10°) operations. We used a workload that the
update ratios were varied from 0 to 100%. For update, there
was the same number of insertions and celetions. In this
experiment, the fan-out and the size of the led node for the
B"-tree were 10, and the nodk size of the T-tail tree had the
same number. From the figure it can be seen that,
operations on the B*-tree dways costs more than thase on
the T-tail tree. The underlying reason is that, during a
seach over the B'-tree, a linea (binary) seach is
performed in every node before going to the next level. In
the T-tail tree, only two data comparisons (minK and
maxK) are conducted before going to the next level. Note
that, without concurrency control, data cmparison is the
most expensive basic operation among the other basic
operations. With the increase of the number of the update
operations, node splits and concatenations occur frequently.
A node split or concaenation will cause a reaursive
insertion or deletion d keys in some nodes, which may
involve alot of data comparisons, thus imposes much
additional cost for the operation. For the T-tail tree,
rotations occur relatively infrequent and the search cost is
lower.
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Figure 3.2 Processing time

Given 0.5M data entries, Figure 3.3 depicts the numbers
of nodes for both the T-tail tree and the B*-tree, with
varying node sizes from 5 to 15 From the figure, we
observe that the B*-tree has far more nodes than the T-tail
treewhen the noce sizeis gnall. It is due to thefad that the
B'-tree puts all data in leaves and all internal nodes are
taken as index. Compared with the T-tail treg the B*-tree



holds additional nodes for indexing. With small node size
there should be moreled nodes than those with larger node
size With the increase of node size, the node numbers for
both trees become smaller.
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For varying node size, Figure 3.4 gives the tree heights
of both trees of 0.5M data entries. It is obvious that the T-
tail tree is much higher than the B'-tree. The reason is
straightforward. Sincethe T- tail tree is a balanced binary
tree and at each level there ae only two subtrees. In that
sense, nodes ‘pile up’ much faster than the B*-tree for its
fanou and led node size were 10 in ou experiment. For
operations without concurrency control, it is faster to
seach in the T-tail treethan to search in the B*-tree, since
the former involves many relatively chegp pointer
assgnments and fewer expensive data comparisons, the
later employs many expensive data comparisons. While
operations concurrent perform on the T-tail tree, the higher
tree height will reduceits performance heavily for the sake
of locking and unlocking. We will show this point in the
following group d experiments.
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Performance of Tree Operations with Concurrency
Control. In this group of experiments we investigated into
the performance of both the T-tail tree and the B-link tree
with presence of concurrent operations. A lock manager
was employed to maintain the lock resources. For the T-tail
tree, we implemented al the algorithms in bah the
pessmistic and the optimistic goproacies presented in
sedion 2. The eperiment results of the pessmistic
approach and the optimistic gpproach are denoted as the T-

tree pessmistic and the T-tree optimistic in the figures,
respedively. For the B-tree, we implemented the B-link
tree algorithms [23], whose experiment results are denoted
as the B-link tree in the figures. In this group d
experiments, we studied the dfeds on the processngtime
by varying the update ratio, number of operation, and tree
size

Figure 3.5 shows the dfed on the processing time by
varying the update ratio. In the experiment, both the T-tail
tree and the B-link tree had the same number of data
pointers to data entries, 0.5M. The total number of
operations conducted on the trees were 0.5M. The node
size ad the fan-out were 10. From the figure, it can be
sean that, the B-link tree dgorithms and the T-tail tree
optimistic gpproach (optimistic goproach heredter) are
much better than the T-tail tree pessmistic gpproach
(pesgmistic goproach hereafter). For diff erent update ratio,
the procesdng time for the pessmistic goproach varied
from 1366 seomnds to 1404 semnds. The time for the
optimistic gproach was from 10.8 sewmnds to 19.6
seoonds. For the B-link tree dgorithms, it was only from
2.2 seonds to 113 seconds. That is, 5 or 10 times more
efficient than the dgorithms onthe T-tail tree. It is becaise
pessmistic goproach uses many expensive locking and
unlocking primitives in ead operation. Even though the
optimistic goproach uses fewer locking and wnlocking, it
employs aaqquiring and releasing semaphare, the second
most expensive primitives. Moreover, it makes the tree
exclusively locked by some insertion operations, which
reduces the concurrency of the operations. On the cntrary,
the B-link tree d&gorithms lock only one node
simultaneously.
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Figure 3.5 Effect of update ratio

Modifying the number of operations, we re-conducted
the experiments. The experimental results are presented in
Figure 3.6. The number of operations was varied from
0.1M to IM. The workload consisted of seach 80% and
10% ead o insertion and deletion. From the figure, it can
be observed that the relations among these three wirves are
the same & in the previous figure. For different number of
operations, the processngtimefor the pessmistic goproach
varied from 27.4 seoonds to 274.5 seaonds, the time for the
optimistic goproach from 2.5 seands to 25.1 seconds, and



that for the B-link tree dgorithms was from 0.8 semnds to
8.0 semnds. The reason is that, since the workload and the
number of data eitries in the tree ae kept unchanged
during the experiment, each operation has the same st in
eah approach. But they are different for different
approaches. Thus the three arves increase linealy, but
with dfferent trends.
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Figure 3.6 Effect of the number of operations

We further varied the treesize and re-tested the dgorithms
on the trees. The result is given in Figure 3.7. In this
experiment, the treesizewas varied from 0.1M to 1M data
entries. The number of operations was 0.5M, and the
workload was the same & in the previous experiment.
From the figure, we observe that the relations among the
three arves are unchanged also. That is, the B-link tree
algorithms are the best, then the optimistic approach, and
the last one is the pessmistic goproach. The reason is that,
with the increment of the treesize the height of the T-tail
tree increased, thus giving rise to more overheads of the
locking and unlocking. On the other hand, the numbers of
the locking and urocking in the other two approaches are
amost not affeded by the varying of treesize Therefore,
the processng time for the pessmistic approach is
increased with the growing o the treesize But the times
for the other two approaches are dmost unchanged.
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Discussions. The experimentsin thefirst group gave the
same onclusion as [15]. That is, the T-tail tree performs
better than B*-tree without concurrency control. However,
with concurrency control, it seemsthe B-link tree performs
better than the T-tail tree, and hence the T-tree. It can be
explained in the followings.

Lehman et a. [17] and Gottemukkala & al. [8] pointed
out that, locking and uriocking are the most expensive
operations in the main-memory data management system.
Thisis acually our test result presented in Table 3.1. Even
the values may be different for different system, but
locking and urlocking are several orders of magnitudes
more epensive than the other operations in ou test. A
natural consequence of this observation is that, in main-
memory environment, any concurrency control mechanism
with more locking or unlocking shoud na perform better
than those with fewer locking and urocking.

The pessmistic goproach employs many locking and
unlocking operations. In the seach phese, eah operation
locks and uriocks every node on the way once For update
operations, they will locks al the nodes from the aiticd
node to the bounding node simultaneously. However, for
the B-link tree algorithms, one update operation locks far
fewer nodes than that in the pessmistic goproach. Even the
optimistic gpproach locks fewer nodes also, but it has to
aquire and release semaphore. Moreover, some insert
operations may exclusively lock the treefor fixing, which
deaeases the performance When the whole treeis taken as
a single node and ead operation exclusively locks the
whole tree during its processng, the B-link tree still
outperforms the T-tail tree if the update ratio is not very
high[21].

The tree height is another fador that affects the
performance of the locking and unlocking in the T-tail tree
Given afixed number of data entries, a T-tail tree is much
higher than its B-link counterpart (see Figure 3.4). This
always leads to, the existence of a large number of nodes
on the way between the criticad node to the bounding nodke,
which imposes much cost for the update operations. The
third fador that makes it difficult for designing
concurrency control mechanism on a T-tree is that, a tree
rotation always involves a aiticd node, which may be far
away from the bounding node. This makes the locking
mechanism hard to use aad sometimes it has to lock more
nodes to avoid deadlock or lock corflicts.

To design concurrency control medchanism over T-trees,
two fadors should be given much concentration. Oneisthe
number of locks one operation shoud pu on nodes and the
other is the degree of concurrency. These two fadors may
affed the performance heavily as dwown in our
experiments.



4. Conclusions

In this paper we studied the performance of concurrent
operations over a T-tree, a well-known main memory
database indexing structure. Two concurrency control
approaches, the pesamistic goproach and the optimistic
approach were presented. A simulation model was built to
investigate the performance of the B-tree ad the T-tree
with dfferent concurrency control approaces.

Withou enforcing concurrency control mechanisms, our
results conform to the previous reported work. That is,
when the data reside in memory, the T-tree index does
outperform the B-tree index. However, when concurrency
control mechanisms are eiforced, both pessmistic and
optimistic gpproaches make the T-tree index a worse index
structure than the B-tree index. The basic reason is that,
although the T-tree reduces comparison time within anode,
the overhead of alarge number of locking and urocking is
too Hgh. Therefore, unless we can provide better
algorithms to reduce the number of locks, the concurrent B-
trees will outperform the T-trees.
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