
New Sorting Patch Test Report

1. Environment Specification

Amazon EC2 Instance

instance type: t2.micro

vCPUs: 1

RAM: 1.0 GiB

OS: Ubuntu 16.04.3 LTS

2. Test Steps

Standalone Test

1. Clone the Dual branch from https://github.com/Strider-Alex/PostgreSQLSorting

2. Compile the source code and run the executable.

3. The executable generates test data files and sorts arrays of different patterns using original

qsort and the new qsort implemented with intro sort. The minimum and maximum data size is

specified in benchmark.h.

Array patterns specification:

• Sorted: already sorted array

• Random: random array

• Reversed: reversely sorted array

• Mostly sorted: divide a sorted array into bins of size 10, then randomly shuffle these bins

• Most reversed: divide a reversed array into bins of size 10, then randomly shuffle these bins

• Killer sequence: a specially generated sequence that makes qsort reach 𝑛2 time complexity

Pgbench Test

1. Generate initialization SQL script from the test data files in the Standalone Test. These

initialization files create a test table and insert simple records with only one integer field into

the table. Or you can use the SQL scripts I provided.

2. Clone the source code for PostgreSQL from https://github.com/postgres/postgres

3. Compile the master branch, install and start the server.

4. Create database test if not exits.

5. Run an initialization SQL script on database test by the following command:

psql -d test -f <init SQL script>

6. Benchmarking the test script on data base test by the following command:

pgbench test -c 10 -f <test script>

The test script simply selects all entries from the test table and order them by values.

7. Apply the patch of the new sorting routine, then re-compile, install and restart server.

https://github.com/Strider-Alex/PostgreSQLSorting
https://github.com/postgres/postgres

8. Apply Step 5 and 6.

(I may write a shell script to make previous steps easier)

3. Test Result

Notice: green indicates better performance; red indicates worse.

Standalone test – intro sort – CPU clocks

 Sorted Random Reversed Mostly sorted Mostly reversed Killer sequence

N=1000 5.26 166.18 141.76 130.60 134.00 381.52

N=10000 51.00 2326.80 1716.89 1573.55 1565.61 5578.46

N=100000 505.54 29299.04 15225.53 17743.78 17758.34 72358.99

Standalone test – pg qsort – CPU clocks

 Sorted Random Reversed Mostly sorted Mostly reversed Killer sequence

N=1000 5.56 170.35 126.84 131.28 137.85 412.30

N=10000 50.91 2384.32 1563.97 1545.40 1527.69 33236.13

N=100000 514.35 29311.91 15768.52 16542.25 16760.67 2264115.75

Pgbench – intro sort – transaction per second (excluding connections establishing)

 Random Killer sequence

N=1000 1571.911076 1360.387390

N=10000 215.382229 158.025610

N=100000 15.325185 16.671237

Pgbench – pg qsort – transaction per second (excluding connections establishing)

 Random Killer sequence

N=1000 1535.237516 1236.217073

N=10000 204.818081 40.568045

N=100000 15.295583 16.600637

Notice: when N=100000, tuplesort switches to external sorting algorithms instead of using qsort, so the

result is very similar.

4. Conclusion

New intro sort-based sorting routine has slightly better performance than pg_qsort on sorting random

data. Also, since it’s has guaranteed 𝑂(𝑛𝑙𝑜𝑔𝑛) worst case time complexity, the new sorting routine

dramatically outperforms pg_qsort on specially generated killer sequence.

On the other hand, pg_qsort seems to be slightly better on sorting mostly sorted data. This is probably

because it checks if the array is pre-sorted on every recursion. However, in the new sorting routine, we

only check if the array is pre-sorted once on the whole array, which gives us better performance on

random data.

