
PostgreSQL
Development of shared disk scale-out

November 15, 2019
Fujitsu Limited
Data Management Division
Takayuki Tsunakawa

Copyright 2019 FUJITSU LIMITED0

Self-introduction

◼ Community citizen

◼ PostgreSQL contributor

◼ PostgreSQL Ecosystem Wiki creation & maintainer

◼ Member of the CR division of the PostgreSQL Enterprise Consortium

◼ Corporate citizen

◼ Community Activities Team Leader

◼ FUJITSU Software Enterprise Postgres (FEP) Developer

Copyright 2019 FUJITSU LIMITED1

Contents of this deck

◼ Triggers for the development of shared disk scale-out

◼ Compare scalability choices

◼ Shared disk scale-out architecture and design

◼ Is shared disk scale-out needed?

Copyright 2019 FUJITSU LIMITED2

PostgreSQL's popularity trends

Copyright 2019 FUJITSU LIMITED

https://db-engines.com/en/ranking_trend/system/PostgreSQL

2019 ranking

Oracle: 1269 → 1355, + 86

MySQL: 1154 → 1283, + 129

SQL Server: 1040 → 1095, + 55

PostgreSQL: 466 → 484, + 18

Named the most popular DB-Engines in 2017 and 2018

(DBMS of the Year)

But in 2019, PostgreSQL had less growth,

Popularity of the top three grew

3

https://db-engines.com/en/ranking_trend/system/PostgreSQL

The Popularity of Linux

◼ About half of Azure's VMs are running Linux

◼ 40% of top 1 million sites run Linux, 33% Windows
(W3Techs.com, Oct 2019)

◼# 1 Growth in Server OS Market, Second in market sales
share

Copyright 2019 FUJITSU LIMITED4

What can we do to make it more popular?

◼ Scale-out: Handle more data and requests

◼ Hardware-accelerated: DRAM, non-volatile memory, GPU, FPGA

◼ Multiple models: working with data in different formats

(Key Value, Document, Graph, Time Series...)

◼ Higher security: encryption, privilegs, SQL firewall

◼ Improved migration from other DBMSs

Copyright 2019 FUJITSU LIMITED

Bigger, faster.

Do anything, with convenience

and security.

5

Customer voice for shared disk scale-out

◼ "We want Oracle RAC capabilities"

1. Want to exceed the processing power of a single server

◼ Satisfied with Exadata performance and scalability

2. Need cost-effective high availability

◼ Want to read and write data utilising standby server

3. Don't want to change the application

◼ It is difficult to partition and position data

Copyright 2019 FUJITSU LIMITED6

Long history of shared disk scale-out

◼More than 25 years since mainframe and minicomputer era

◼ Oracle Parallel Server (OPS) for VAX/VMS — early 1990s

->Oracle Real Application Clusters (RAC) — 2001

◼ IBM DB2 for z/OS - early 1990s

->IBM DB2 pureScale for AIX, Linux - 2009

◼ Sybase Adaptive Server Enterprise Cluster Edition: 2010

◼ Is it so easy to incorporate this advanced technology into
PostgreSQL?

◼ Is it useful? Will it lead to PostgreSQL taking a leap?

Copyright 2019 FUJITSU LIMITED7

Compare scalability choices

1. shared disk scale-out (hereinafter SD)

◼ Oracle RAC, IBM Db2 pureScale

2. shared nothing scale-out (hereinafter SN)

◼ Oracle Sharding, IBM Db2

◼ Google Cloud Spanner, CockroachDB, MySQL Cluster

◼ Azure Database for PostgreSQL - Hyperscale (Citus)

◼ Greenplum, Postgres-XL

3. Scale up

Copyright 2019 FUJITSU LIMITED8

Shared disk method overview

◼ Multiple DB instances accessing database on
shared storage

◼ DB cache and locks are managed in a distributed
way across coordinated DB instances

◼ Each DB instance writes to a separate transaction
log

Copyright 2019 FUJITSU LIMITED

DB Cache

lock

Database log loglog

DB Cache

lock

DB Cache

lock

Instance 1 Instance 2 Instance 3

Interconnects

Information on "DB Cache"
and "lock" is circulated.

Application/Web Server

Shared Storage

9

Overview of the shared nothing method

◼ Fragments a table into row groups by column
values and stores the fragments in DB instances

◼ Each DB instance reads and writes only its own
table fragments and transaction logs on local
storage

◼ Each DB instance manages the DB cache and
locks for its own table fragments

Copyright 2019 FUJITSU LIMITED

Worker Worker Manager

DB Cache

lock

log

table fragment

DB Cache

lock

log

table fragment

DB Cache

lock

Catalogs

log

Interconnects

"Table Data" and "SQL/Explain Plan"
is circulated.

Application/Web Server

10

Method comparison - Scalability and performance
(1/7)

◼ Scalability of processing capability: SN > SD > Scaleup

◼ Is scale up enough for OLTP for users in a single organization?

• x 86 commodity servers: 2 sockets/56 cores, hundreds of GB RAM

• X 86 high-end servers (HPE Superdome): 32 sockets/896 cores, 48 TB RAM

• Cloud VM (Azure M 208 ms v2): 208 vCPU, 5700 GB RAM

◼ SD method scales RAC to 100 nodes and pureScale to 128 nodes

• pureScale is used for mostly read Web commerce workloads

• High scalability of 95% on 64 nodes and 84% on 128 nodes (Source: IBM)

◼ The SN method has the highest scalability because it has few competing shared resources.

Copyright 2019 FUJITSU LIMITED11

Method Comparison - Scalability and performance
(2/7)

◼ Performance comparison

◼ TPC-C delivers high SN and SD performance

• 1 = SN 60.88 million tpmC (Alibaba OceanBase, 2019)

• 2 = SD: 30.24 million tpmC (Oracle RAC, 2010)

• 3 = SN: 10.36 million tpmC (IBM DB2, 2010)

Copyright 2019 FUJITSU LIMITED12

Method Comparison - Scalability and performance
(3/7)

◼ Easiness of scaling: Scaleup > SD > SN

◼ Scaleup: Add CPU and memory to server, change VM instance

◼ SD: Add Server. Performance may require changes to the physical data structure

◼ SN: Add servers and redistribute data or change where apps connect

◼ Distance between DB servers: SN > SD

◼ SD – all DB servers are close together to share the entire dataset

◼ SN — A globally distributed database divides data sets by country or region.

Data owned by DB servers that are near local users of each location

◼ Load balancing: SD > SN

◼ SN: To balance the load on the DB server, distribute data so that access frequency is equal

Copyright 2019 FUJITSU LIMITED13

Method Comparison - Scalability and performance
(4/7)

◼ Cache validity: SN > SD > Scaleup

◼ SD: Each DB server must cache the entire dataset

◼ SN: Each DB server only needs to cache its own data.

◼ Hotspot tolerance: SN > Scaleup > SD

How can I reduce the concentration of reads and writes to particular data and
transaction logs?

◼ SN: Divide data across DB servers and distributes access

◼ Scaleup: More CPU, more storage, less waiting at hotspots

◼ SD: Read hotspots are mitigated by adding more DB servers and storage

Writes cause increased latency in competition on the same block due to cache integrity

Copyright 2019 FUJITSU LIMITED14

Method Comparison - Scalability and performance
(5/7)

◼ Data injection and analysis, batch processing: SN > SD > Scaleup

◼ SN is ideal for handling large amounts of data

◼ To reduce read/write response time, divide data and processing to run in parallel

◼ Reduce bottlenecked shared resources to increase throughput

◼ SN occupies the top rank of TPC-H.

Copyright 2019 FUJITSU LIMITED15

Method Comparison - Scalability and performance
(6/7)

◼ Multi-tenant OLTP: SN > SD > Scaleup

Apps that allow users, devices, organizations and stores to divide data and
processing

◼ SN: Distribute data on DB server with key containing tenant ID.

The app uses the tenant ID to select a connection from the connection pool.

If it cannot be partitioned, such as read-only data, it must be on the management server.

Otherwise, replicate on all DB servers.

◼ SD: Like SN, divide data and send a tenant's request to a specific DB server

Shared storage is the bottleneck. Advantages of not having to duplicate read-only data

◼ Sequence is the bottleneck for both SN and SD

◼ Access using a secondary index in SN is likely to be slow across multiple DB servers

Copyright 2019 FUJITSU LIMITED16

Method Comparison - Scalability and performance
(7/7)

◼ Single-tenant OLTP: SD > Scaleup > SN

Difficult to divide data for use by users in one organization

◼ Scaleup: The simplest and most cost-effective way if handled on a commodity server

◼ SD — Keep data as is, add servers (CPU and Memory) to increase throughput

Response times are higher than single servers due to distributed buffer and lock
management

When reads and writes are concentrated on the same block, data transfer increase and
performance degradate due to cache integrity,

Example:Row insertion in ascending order of key to index, numbering from sequence

◼ SN: Increased response time due to data transfer between DB servers and distributed 2PC

Copyright 2019 FUJITSU LIMITED17

Method Comparison - Availability

◼ Resilience to server failures: SD > SN = Scaleup

◼ SN – only failed server data is inaccessible

Increasing the number of servers increases the probability that one of them will fail, reducing the overall
availability of the cluster

Single point of failure is admin node

◼ SD: Regardless of the failed DB server, surviving server can access all data

◼ Resilience to storage failures: SN = SD = Scaleup

All methods require hardware or software redundancy

◼ Failover impact: SD > SN = Scaleup

◼ Scaleup, SN – During DB server recovery, only the data it holds is inaccessible

◼ SD – Other DB servers can access data other than what was updated by the failed DB server

RAC freezes the activity of the entire cluster during remaster and identification of recovery set

Copyright 2019 FUJITSU LIMITED18

Method Comparison - Application transparency
(1/3)

◼ Data placement: SD = Scaleup > SN

◼ SN: Data segmentation and placement designed for inter-node transfer and 2PC
avoidance and load balancing

Partition tables by user or store IDs and distribute across DB servers

Place copies of read-only data on all DB servers

◼ Workload management: Scaleup > SD > SN

◼ SN: The app issues a transaction request to the DB server with the required data.

◼ SD: All data is shared so you don't have to worry about where you put it

However, to reduce read/write competition for the same block,

it is better to split workloads across DB servers

Copyright 2019 FUJITSU LIMITED19

Method Comparison - Application transparency
(2/3)

◼ Application changes: Scaleup > SD > SN

◼ DML statements do not need to be modified on any method

◼ SN: Change DDL statements based on data placement design

Partition tables by hash or range.

Distribute to different DB servers

Do not increase the sequence cache or enforce ordering

◼ SD: Change DDL statements to reduce read/write competition for the
same block between DB servers

Copyright 2019 FUJITSU LIMITED20

Method Comparison - Application transparency
(3/3)

[Recommendations for RAC]

◼ Reduce the number of indexes

◼ Do not increase the sequence cache or enforce ordering

◼ Generate node-specific sequence range values (scalable sequence)

◼ Choose a smaller block size or set free space for blocks

◼ Partition the primary key index

◼ Hash partitioning tables to create local indexes

◼ Use a reverse key index with key bits inverted

Copyright 2019 FUJITSU LIMITED21

Method Comparison - Cost (1/2)

◼ Servers: Scaleup = SD > SN

◼ Scaleup, SD: need only DB server to access data

◼ SN – Admin server and its standby required

Manages cluster membership, DB catalogs, sequences, and transactions

◼ Standby server capacity: SD > SN = Scaleup

◼ Scaleup, SN: Standby servers can perform read queries and backups.

Cannot write.

◼ SD – No standby-only server, all servers can read and write

Copyright 2019 FUJITSU LIMITED22

Method Comparison - Cost (2/2)

◼ Storage: Scaleup > SN > SD

◼ Scaleup provides direct-attached storage (DAS).

Get the most out of your storage capacity and performance

◼ SN: Same as scaleup, but if data and processing cannot be distributed well, capacity and
performance will be insufficient

◼ SD: No DAS available, lower price/performance ratio

Access storage over network (FC, NVMet-oF, iSCSI)

If using a distributed file system, then also through the storage server (NFS, Ceph)

Persistent memory in server memory slots is not used for its true-value

Copyright 2019 FUJITSU LIMITED23

Method Comparison Summary (1/2)

Copyright 2019 FUJITSU LIMITED

Item SN SD Scaleup

Scalability of

processing capability
3 2 1

Easiness of scaling 1 2 3

Distance between

DB servers
3 1 1

Load balancing 1 3 1

Cache validity 3 2 1

Hotspot tolerance 3 1 2

Data injection and

analysis, batch

processing

3 2 1

Multi-tenant OLTP 3 2 1

Single-tenant OLTP 1 3 2

Subtotal 21 18 13

Item SN SD Scaleup

Number of

servers
2 3 3

Storage 2 1 3

Standby

server

capacity

2 3 2

Subtotal 6 7 8

◼ SN has higher scalability and price/performance ratio than SD

Scalability and performance Cost

24

Method Comparison Summary (2/2)

◼ SD outperforms SN for availability and application transparency

Copyright 2019 FUJITSU LIMITED

Item SN SD Scaleup

Resilience to server

failures
1 3 1

Resilience to storage

failures
1 1 1

Failover impact 1 2 1

Subtotal 3 6 3

Item SN SD Scaleup

Data placement 1 3 3

Workload

management
1 2 3

Application changes 1 2 3

Subtotal 3 7 9

Application transparencyAvailability

25

Database WAL WALWAL

Overall configuration of the shared disk method for
PostgreSQL

◼ In addition to a maximum of 128 DB
instances, Coordinator is running on a
separate server

◼ Coordinator centrally manages transactions,
DB Cache, and locks

◼ In order to eliminate SPoF, Coordinator
works in a master-standby configuration

◼ The file system is either

Cluster FS (Red Hat GFS2, GPFS) or

Distributed FS (Ceph, NFS)

Copyright 2019 FUJITSU LIMITED

DB Cache

lock

DB Cache

lock

DB Cache

lock

Instance 1 Instance 2 Instance 3

Interconnects

Information on "lock", "DB Cache",
and "XID/Snapshot" is circulated.

Application/Web

Server

Coordinator

26

Transaction management

◼ Coordinator manages:

◼ List of active transaction IDs (XID)

◼ Commit log showing transaction status (CLOG)

◼ Upon request from the backend, the Coordinator

◼ Assign XIDs, take snapshots and return to requestor

◼ Log transaction completion in XID list and CLOG

◼ Notify requester of transaction status by CLOG

Copyright 2019 FUJITSU LIMITED

CLOG Buffer

xid1 xid2 xid3 xid N
...

DB Instance 1

g
e
t

n
e
w

 X
ID

/s
n
a
p
s
h
o
t

X
ID

/s
n
a
p
s
h
o
t

c
o
m

m
it
/a

b
o
rt

 x
a
c
t

O
K

g
e
t

x
a
c
t

s
ta

tu
s

c
o
m

m
it
te

d
/a

b
o
rt

e
d
 /

ru
n
n
in

g

DB2 instance 2 DB Instance 3

Coordinator

27

DB cache management

◼ DB instances with separate caches read and write the same block

->Cache integrity required

◼ Cache consistency ≈ Prevent old data from being read

◼ CPU cache consistency protocol MESI

◼ Multiple DB instances can have clean (Shared) copies of the same block

◼ When a DB instance writes a block and makes it dirty (Modified),

the copies that are held by other DB instances are discarded (Invalidate)

◼ Coordinator manages the status of each block with its cached instance.

Mediates exchanges.

Copyright 2019 FUJITSU LIMITED

B1 Modified inst1

B2 Shared inst1 inst2

B3 Shared inst1 inst2

B1 (dirty)

B2 (clean)

B3 (clean)

B2 (clean)

B3 (clean) B3 (clean)

DB Instance 1 DB2 instance 2 DB Instance 3

Coordinator

28

Lock management

◼ Coordinator and DB instance share management

◼ Coordinator centrally manages lock tables for deadlock detection

◼ However, if it manages all locks at all times, Coordinator becomes the bottleneck

◼ Fast Path Locking (FPL) since PG 9.2 means DML does not interact with Coordinator

◼ Weak locking: SELECT, INSERT, DELETE, UPDATE

◼ Strong locking: ALTER/DROP, CLUSTER, REINDEX, etc.

◼ DB instance

◼ Weak locks continue to be fast with FPL

◼ Strong locks are requested to and processed by Coordinator

◼ Coordinator

◼ When a strong lock request is received, it instructs the DB instance with the conflicting weak lock to send the
lock information.

◼ Detects deadlock and instructs DB instance to abort transaction

Copyright 2019 FUJITSU LIMITED29

Other design elements

◼ Network

◼ Use UDP for much of the DB instance-to-instance communication to reduce overhead

◼ Even faster with InfiniBand and RoCE (RDMA over Converged Ethernet)

Mellanox 100Gb Ethernet/IB NICs for $795, 50 GbE NICs for $ 475
InifiBand and RDMA available for Azure H-Series VMs

◼ Do not use multicast

Oracle RAC uses multicast, so it cannot be used on clouds like AWS or Azure

◼ Cluster

◼ The HA framework such as monitoring, failover, and fencing is left to the clustering software.

◼ Recovery

◼ Coordinator detects DB instance failure and directs recovery to one of the DB instances

◼ Apply WAL to keep multiple DB instances' updates to the same page

To do this, add a page generation number to the page header and to the WAL record

◼ PITR merges all DB instance WALs and applies them in their original update order

Copyright 2019 FUJITSU LIMITED30

Performance (Reference)

PG-CALS performance (Source: Yotaro NAKAYAMA, 2007)

UNIADEX (stock), in partnership with Unisys, announces preliminary findings

2 DB servers, pgbench, 100 concurrent connections

How many times (X) is tps per 1 existing PostgreSQL?

Read-only:update ratio 7:3 is 1.4X, 0:10 is 1.8X

Our implementation wants to increase this X factor by the following differences

◼ Updating buffer does not send data to Coordinator

◼ Based on FPL, DML statements do not interact with Coordinator

◼ Low latency network and RDMA

Copyright 2019 FUJITSU LIMITED31

Is shared disk scale-out needed?

Assumptions: SN is required for analysis and Web-scale OLTP

Question: Does OLTP require SD?

1. Can you handle it with scale up?

◼ On commodity servers, up to 56 cores and up to 1.5 TB of DRAM is possible

◼ Storage accelerated with NVMe SSD and persistent memory

◼ Amazon wipeout nearly 7,500 Oracle DBs (2019/10/15)

◼ Migrated to RDS, Aurora, Redshift, DynamoDB, ElastiCache

2. Is SD a cost-effective HA?

◼ Reduce utilization of servers in normal operation to take over the processing of failed servers

->What's the difference between having a standby server underutilized?

3. Do users want it even with changes to their applications?
Is it possible to implement those changes?

Copyright 2019 FUJITSU LIMITED

Seeking for opinion

32

