
Performance of PMEM patchsets June 18, 2021

<takashi.menjou.vg AT hco.ntt.co.jp> 1

1. Configurations
1.1. Hardware

System HPE ProLiant DL380 Gen10

CPU Intel Xeon Gold 6240M x 2 sockets (18 cores per socket; HT disabled by BIOS); one NUMA

node per socket

DRAM DDR4 2933MHz 192GiB/socket x2 sockets (32 GiB per channel x 6 channels per socket)

Optane PMem Apache Pass, App Direct Mode, DDR4 2666MHz 1.5TiB/socket x 2 sockets (256 GiB per

channel x 6 channels per socket; interleaving enabled)

PCIe SSD Intel DC P4800X Series SSDPED1K750GA; connected to NUMA node #0

1.2. Software

Distro Red Hat Enterprise Linux release 8.2 (Ootpa)

Linux kernel 4.18.0-193.el8.x86_64

gcc 8.3.1-5.el8

glibc 2.28-101.el8

PMDK 1.6.1-1.el8

VTune Intel VTune Profiler 2021.2.0

PostgreSQL eb43bdb (master @ Tue May 25 19:44:55 2021 -0400)

1.3. PostgreSQL installation
$./configure --enable-debug --prefix=$HOME/postgres/[snip] --with-extra-version=-[snip] [..]
$ make world
$ make install-world

Each PostgreSQL is installed into separated directory under non-root $USER’s $HOME/postgres/, with an extra

version string generated from commit ID to identify it after installation. The --enable-debug option is for analysis

by VTune. The world and install-world targets are for pg_prewarm extension.

There may be additional options in the above [..] on the certain conditions described in Section 1.4.

Performance of PMEM patchsets June 18, 2021

<takashi.menjou.vg AT hco.ntt.co.jp> 2

1.4. PostgreSQL per-condition setup

To compare performance between patchsets and/or customized configurations, I set up several conditions and give

them names shown in the following table. Note that there are two variants for “SegmentBuffer” to see how and how

much performance varies with preallocation of WAL segment files. Also note that the variants are displayed as in

their short forms in the figures in Section 3.

Name Patchset and/or customized configuration

Original No patchset or customized configuration

SegmentBuffer • “Map WAL segment files on PMEM as WAL buffers” v2, but excluding the last one patch

“Preallocate and initialize more WAL if wal_pmem_map=true”

• Add --with-libpmem option to ./configure

• Amend postgresql.conf as follows:
 wal_pmem_map=true

`-- (prealloc) Ditto, but including the last one patch “Preallocate and initialize more WAL if

wal_pmem_map=true”

OneLargeBuffer • “Non-volatile WAL buffer” 20210525

• Add --with-libpmem option to ./configure

• Amend postgresql.conf as follows:
 nvwal_path=’/mnt/pmem0/pg_wal/nvwal

 nvwal_size=120GB

UnloggedAsync • No patchset

• Amend postgresql.conf as follows:
 synchronous_commit=false

• Add --unlogged-tables option to pgbench -i

Performance of PMEM patchsets June 18, 2021

<takashi.menjou.vg AT hco.ntt.co.jp> 3

1.5. Common postgresql.conf for all conditions
max_connections = 300
shared_buffers = 32GB
dynamic_shared_memory_type = posix
max_wal_size = 120GB
min_wal_size = 120GB
log_timezone = 'Asia/Tokyo'
datestyle = 'iso, mdy'
timezone = 'Asia/Tokyo'
lc_messages = 'C'
lc_monetary = 'C'
lc_numeric = 'C'
lc_time = 'C'
default_text_search_config = 'pg_catalog.english'
superuser_reserved_connections = 10
wal_level = replica
fsync = on
synchronous_commit = on
wal_sync_method = fdatasync
wal_recycle = on
full_page_writes = on
wal_compression = off
checkpoint_timeout = 12min
checkpoint_completion_target = 0.7
random_page_cost = 1.0
effective_cache_size = 96GB
logging_collector = on
log_rotation_size = 0
log_checkpoints = on
log_error_verbosity = verbose
log_line_prefix = '%t %p %c-%l %x %q(%u, %d, %r, %a) '
log_lock_waits = on
autovacuum = on
log_autovacuum_min_duration = 0
autovacuum_max_workers = 4
autovacuum_freeze_max_age = 2000000000
autovacuum_vacuum_cost_delay = 20ms
autovacuum_vacuum_cost_limit = 400
log_directory = '/dev/shm/pmem/tmp.XXXXXXXXXX'

1.6. Common environment variables for all conditions
export PGHOST=/tmp
export PGPORT=5432
export PGDATABASE="$USER"
export PGUSER="$USER"
export PGDATA=/mnt/nvme0n1/pgdata
export PGCTLTIMEOUT=86400

Performance of PMEM patchsets June 18, 2021

<takashi.menjou.vg AT hco.ntt.co.jp> 4

2. Methods
2.1. Performance test

Run the following steps for each condition in Section 1.4 and for every combination of s = 50 or 2000 and (c, j) =

(8, 8), (18, 18), (36, 18), (54, 18), or (72, 18). Then plot “latency average = __ ms” as average latency and “tps =

__ (without initial connection time)” as throughput for each condition to draw latency-versus-throughput curve

to compare the performance between conditions.

In addition, for (c, j) = (36, 18) as nearly-saturated point, plot “progress: __ s, __ tps ...” for each condition to

compare how and how much the throughput rises and falls over time.

1. Set environment variables as in Section 1.6.

2. Create a PMEM namespace on NUMA node #0. (sudo ndctl create-namespace -f -t pmem -m fsdax -M

dev -e namespace0.0)

3. Make an ext4 filesystem on the PMEM namespace then mount it with DAX option. (sudo mkfs.ext4 -q -F

/dev/pmem0 ; sudo mount -o dax /dev/pmem0 /mnt/pmem0)

4. Make another ext4 filesystem on PCIe SSD then mount it. (sudo mkfs.ext4 -q -F /dev/nvme0n1 ; sudo

mount /dev/nvme0n1 /mnt/nvme0n1)

5. Make /mnt/pmem0/pg_wal directory for WAL and /mnt/nvme0n1/pgdata directory for PGDATA.

6. Run initdb. (initdb --locale=C --encoding=UTF8 -X /mnt/pmem0/pg_wal ...)

i. On “OneLargeBuffer” condition, also give -P and -Q options to create a large buffer file. (... -P

/mnt/pmem0/pg_wal/nvwal -Q 122880)

7. Edit postgresql.conf as in Section 1.5 and amend it as in Section 1.4.

8. Start postgres on NUMA node #0. (numactl -N 0 -m 0 -- pg_ctl -l pg.log start)

9. Create a database. (createdb --locale=C --encoding=UTF8)

10. Initialize tables for pgbench. (pgbench -i -s __ ...)

i. On “UnloggedAsync” condition, also give --unlogged-tables option.

11. Stop postgres. (pg_ctl -l pg.log -m smart stop)

12. Remount the two filesystems mounted at step 3 and 4.

13. Start postgres on NUMA node #0 again. (numactl -N 0 -m 0 -- pg_ctl -l pg.log start)

14. Run pg_prewarm extension for all the four pgbench_* tables.

15. Run pgbench on NUMA node #1 for 30 minutes. (numactl -N 1 -m 1 -- pgbench -r -P 10 -M prepared -

T 1800 -c __ -j __)

Performance of PMEM patchsets June 18, 2021

<takashi.menjou.vg AT hco.ntt.co.jp> 5

2.2. Performance analysis

Same as the performance test shown in Section 2.1, but step 13 and 15 are amended as follows to analyze postgres

with VTune during benchmark.

13. Start postgres on NUMA node #0 again, with VTune started but analysis paused. Here, postgres command

line is used instead of pg_ctl so as not to stop VTune due to termination of the main process of pg_ctl. (vtune
-collect hotspots -start-paused -finalization-mode=none -data-limit=0 -follow-child -call-

stack-mode=user-plus-one -target-duration-type medium -knob sampling-mode=sw -knob enable-

stack-collection=true -knob stack-size=0 -- numactl -N 0 -m 0 -- postgres)

15. Resume VTune’s analysis, then run pgbench on NUMA node #1 to send 2.7M transactions per client, that is,

97.2M transactions in 36-client total. After the benchmark finishes, stop VTune. (vtune -command resume ;

numactl -N 1 -m 1 -- pgbench -r -P 10 -M prepared -t 2700000 -c 36 -j 18 ; vtune -command stop)

VTune reports how much CPU time postgres and its child processes took in total for each function. The following

call graph is a part of what VTune told. Some caller-callee relations look different from actual code, possibly due to

optimization by compiler. Then I draw stacked bar charts with respect to total and logging functions (blue-italicized),

picking up the functions shown in the call graph that took much CPU time. Note, on “OneLargeBuffer,” that

WalSndWakeup appeared as RecordTransactionCommit’s child (red-italicized) although it should be called by

XLogFlush actually. In any case, however, I include WalSndWakeup into XLogFlush’s chart.

Performance of PMEM patchsets June 18, 2021

<takashi.menjou.vg AT hco.ntt.co.jp> 6

3. Results
3.1. Performance test (s = 50)

Figure 3.1-1 Latency versus throughput (s = 50) (lower-right is better)

Figure 3.1-2 Throughput over time (s = 50) (higher is better)

Performance of PMEM patchsets June 18, 2021

<takashi.menjou.vg AT hco.ntt.co.jp> 7

3.2. Performance test (s = 2000)

Figure 3.2-1 Latency versus throughput (s = 2000) (lower-right is better)

Figure 3.2-2 Throughput over time (s = 2000) (higher is better)

Performance of PMEM patchsets June 18, 2021

<takashi.menjou.vg AT hco.ntt.co.jp> 8

3.3. Performance analysis (s = 50)

Figure 3.3-1 Total profile (s = 50) (lower is better)

Figure 3.3-2 Logging profile (s = 50) (lower is better)

Performance of PMEM patchsets June 18, 2021

<takashi.menjou.vg AT hco.ntt.co.jp> 9

Figure 3.3-3 XLogFlush profile (s = 50) (lower is better)

Figure 3.3-4 XLogFlush profile (s = 50) (zoom-in) (lower is better)

Performance of PMEM patchsets June 18, 2021

<takashi.menjou.vg AT hco.ntt.co.jp> 10

Figure 3.3-5 XLogInsert (non-COMMIT) profile (s = 50) (lower is better)

Figure 3.3-6 CopyXLogRecordToWAL (non-COMMIT) profile (s = 50) (lower is better)

Performance of PMEM patchsets June 18, 2021

<takashi.menjou.vg AT hco.ntt.co.jp> 11

3.4. Performance analysis (s = 2000)

Figure 3.4-1 Total profile (s = 2000) (lower is better)

Figure 3.4-2 Logging profile (s = 2000) (lower is better)

Performance of PMEM patchsets June 18, 2021

<takashi.menjou.vg AT hco.ntt.co.jp> 12

Figure 3.4-3 XLogFlush profile (s = 2000) (lower is better)

Figure 3.4-4 XLogFlush profile (s=2000) (zoom-in) (lower is better)

Performance of PMEM patchsets June 18, 2021

<takashi.menjou.vg AT hco.ntt.co.jp> 13

Figure 3.4-5 XLogInsert (non-COMMIT) profile (s = 2000) (lower is better)

Figure 3.4-6 CopyXLogRecordToWAL (non-COMMIT) profile (s = 2000) (lower is better)

Performance of PMEM patchsets June 18, 2021

<takashi.menjou.vg AT hco.ntt.co.jp> 14

4. Discussions
4.1. Performance results with or without preallocation of WAL

As shown in Figure 3.1-1 and Figure 3.2-1, “SegmentBuffer (prealloc)” got better throughput and average latency

than “Original” and “SegmentBuffer,” and got as much performance as “OneLargeBuffer.” Both of “SegmentBuffer

(prealloc)” and “OneLargeBuffer” preallocate WAL during startup, so preallocation looks helpful for high

performance.

4.2. Checkpoint with or without preallocation of WAL

Figure 3.1-2 and Figure 3.2-2 tell that throughput fell down at some time points during benchmark, and the degree

of the falls in the case of s = 2000 were greater than that of s = 50. Server logs tell that checkpoints started at those

time points. So the falls look due to full-page write to WAL.

As shown in Figure 3.2-2, there were two throughput falls in the entire period of 30-minute benchmark on “Original”

and “SegmentBuffer.” The first fall around 720 seconds was larger (deeper and longer) than that of the second one

around 1440 seconds. This looks due to WAL recycle, that is, it takes less time to recycle existing WAL segment files

during the second falls while it takes more time to prepare new files during the first one.

There were also two falls on “SegmentBuffer (prealloc)” and “OneLargeBuffer,” but those falls are smaller

(shallower and/or shorter) than the previous two. This looks to tell that preallocating WAL is helpful for stable

performance.

4.3. CPU time of XLogFlush

As shown in Figure 3.3-1, Figure 3.3-2, Figure 3.4-1, and Figure 3.4-2, CPU time of XLogFlush on each condition

of “SegmentBuffer,” “SegmentBuffer (prealloc),” or “OneLargeBuffer” got smaller than that of “Original,” while

XLogInsert time became a bit larger. To sum up them, total CPU time decreased. This looks consistent with

performance improvement.

In regard to XLogFlush, Figure 3.3-3, Figure 3.3-4, Figure 3.4-3, and Figure 3.4-4 tell that CPU time of XLogWrite

dropped significantly or completely. This is a positive effect of persistent WAL buffers on PMEM. On “Original,”

inserted (that is, memory-copied) WAL records need to be written out of volatile WAL buffers into segment files to

be durable. In contrast, on “SegmentBuffer” variants or “OneLargeBuffer,” inserted records are already on PMEM

so they only need to be flushed out of CPU cache into PMEM. The latter is simpler than the former so it leads to

improvement of CPU time.

In addition, each CPU time of LWLockAcquireOrWait or LWLockRelease is also reduced. This looks to come

with the improvement of XLogWrite. Note that the difference between “SegmentBuffer” variants and

“OneLargeBuffer” is in which function cache-flush is done: XLogWrite on “SegmentBuffer” variants and XLogFlush

on “OneLargeBuffer.” “SegmentBuffer” variants cache-flush records and update shared variables with

WALWriteLock held, so LWLockAcquireOrWait and LWLockRelease still appear in the analysis results. On

“OneLargeBuffer,” WALWriteLock was not held during cache flush any more, but a spin-lock was required for

updating shared variables. This possibly causes the increase of CPU time indicated by “Others” sub-bar, compared

to “SegmentBuffer” variants.

Performance of PMEM patchsets June 18, 2021

<takashi.menjou.vg AT hco.ntt.co.jp> 15

4.4. CPU time of XLogInsert

In regards to XLogInsert, Figure 3.3-5 and Figure 3.4-5 show that CPU time of CopyXLogRecordToWAL on

“SegmentBuffer” variants got larger than that of “Original.” This is a negative effect of WAL buffers on slow memory.

Because Optane PMem is slower than DRAM, it takes more time to memory-copy WAL records into the buffers on

Optane PMem than those on DRAM. This also looks to cause WALInsertLockAcquire, LWLockReleaseClearVar,

and LWLockRelease in XLogInsert, and WaitXLogInsertionsToFinish in XLogFlush to take more time.

The two figures also show that CPU time of CopyXLogRecordToWAL on “SegmentBuffer (prealloc)” got smaller

than that of naïve “SegmentBuffer.” See the next section for details.

4.5. CPU time of CopyXLogRecordToWAL

Figure 3.3-6 and Figure 3.4-6 are breakdown of CopyXLogRecordToWAL. LWLockAcquire, PmemXLogCreate,

AdvanceXLInsertBuffer, and LWLockRelease completely dropped on “SegmentBuffer (prealloc).” This shows why

performance got better: offloads of WAL initialization. Please note that “initialization” here includes not only clearing

buffer pages and/or segment files, but also advancing LSNs with the pages and putting headers onto the pages.

On “Original,” WAL buffers (pages and xlblocks) are initialized for new records in two ways. First, initialization

just before insertion in cases of buffer full. Second, periodical initialization by walwriter, one of postgres’ background

processes. The former is on a critical path, and appears in the two figures as AdvanceXLInsertBuffer and the two

light-weight lock functions for WALBufMappingLock. In addition, on “SegmentBuffer,” WAL segment files for new

records should exist at insertion time, and they will be created and cleared by PmemXLogCreate if they do not exist

at that time yet. On those conditions, the size of the WAL buffers managed by xlblocks is not so large: at most one

segment (typically 16MiB) on “Original” or exactly one segment on “SegmentBuffer.”

On “SegmentBuffer (prealloc),” my patchset introduces two changes. One is that the size of the WAL buffer pages

managed by xlblocks grows from one segment to min_wal_size. The other is that the WAL buffers are initialized

also at startup. By those changes, WAL initialization on “SegmentBuffer (prealloc)” can be summarized as follows.

At startup, the WAL buffers and the underlying segment files are initialized for the next min_wal_size. After startup,

the walwriter periodically initializes them, that is, advances xlblocks, allocates and memory-maps a new segment

file, clears that file, and puts segment and page headers onto that file. There is no turn for the initialization on the

critical path, so the four functions does not appear in the two figures.

On “OneLargeBuffer,” the four functions does not appear in the figures due to offloads of WAL initialization, too.

However, how “OneLargeBuffer” allocates and initializes WAL is different from how “SegmentBuffer (prealloc)”

does. On “OneLargeBuffer,” WAL buffers are on single large file on PMEM. The file is located at nvwal_path and

its size is nvwal_size which can be dozens of GiB. The file is allocated at initdb and the buffers on it are initialized

at startup time. After startup, the buffers are initialized for new records in bulk at end of checkpoints, not periodically

by walwriter. This works well and is more time-efficient than “SegmentBuffer (prealloc)” if bulk initialization runs

enough ahead of record insertions. If not so, however, the initialization will be caught up and may block the insertions

for a longer time than segment-by-segment initialization on “SegmentBuffer (prealloc).” This may lead to a

temporary and extreme fall of performance.

Performance of PMEM patchsets June 18, 2021

<takashi.menjou.vg AT hco.ntt.co.jp> 16

5. Conclusions and future works
5.1. “SegmentBuffer (prealloc)” versus “OneLargeBuffer”

To summarize, “SegmentBuffer (prealloc)” looks the most reasonable way of all. It’s compatible to the existing

WAL due to use of segment files, but achieves as high performance as “OneLargeBuffer.”

5.2. Relation between startup time and WAL initialization

WAL initialization at startup looks to help high and stable performance. However, startup time must get longer

than before. It’s a future work to examine how much time initialization at startup takes and how the relation between

the time and the size of WAL is.

5.3. Performance change in long term

In this report, benchmark duration for performance test was 30 minutes long. However, longer benchmark should

be also required to examine performance more deeply, so it is one of the other future works. As mentioned in Section

4.2, performance looks to change whether there are recyclable WAL segment files or not. Even if only a small amount

of WAL is initialized at startup, after enough time has passed, there will be a sufficient amount of recyclable segment

files. So an impact of WAL initialization at startup may get small with time.

5.4. Analysis of WAL initialization

On “SegmentBuffer (prealloc),” WAL initialization is offloaded from a critical path to startup and/or walwriter. I

analyzed the initialization on the critical path in this report, but did not do the others yet. This is also a future work.

	1. Configurations
	1.1. Hardware
	1.2. Software
	1.3. PostgreSQL installation
	1.4. PostgreSQL per-condition setup
	1.5. Common postgresql.conf for all conditions
	1.6. Common environment variables for all conditions

	2. Methods
	2.1. Performance test
	2.2. Performance analysis

	3. Results
	3.1. Performance test (s = 50)
	1.
	2.
	3.
	4.
	4.1.
	3.2. Performance test (s = 2000)
	3.3. Performance analysis (s = 50)
	3.4. Performance analysis (s = 2000)

	4. Discussions
	4.1. Performance results with or without preallocation of WAL
	4.2. Checkpoint with or without preallocation of WAL
	4.3. CPU time of XLogFlush
	4.4. CPU time of XLogInsert
	4.5. CPU time of CopyXLogRecordToWAL

	5. Conclusions and future works
	5.1. “SegmentBuffer (prealloc)” versus “OneLargeBuffer”
	5.2. Relation between startup time and WAL initialization
	5.3. Performance change in long term
	5.4. Analysis of WAL initialization

