Обсуждение: missing estimation for coalesce function

Поиск
Список
Период
Сортировка

missing estimation for coalesce function

От
Pavel Stehule
Дата:
Hi

I have a report from my customer about migration his application from Oracle to Postgres.

The most significant issue was missing correct estimation for coalesce function. He had to rewrite coalesce(var, X) = X to "var IS NULL or var = X". Then the result was very satisfactory.

Example:

create table xxx(a int);
insert into xxx select null from generate_series(1,10000);
insert into xxx select 1 from generate_series(1,1000);
insert into xxx select 0 from generate_series(1,1000);
analyze xxx;

postgres=# explain analyze select * from xxx where coalesce(a, 0) = 0;
                                             QUERY PLAN                                            
----------------------------------------------------------------------------------------------------
 Seq Scan on xxx  (cost=0.00..194.00 rows=60 width=4) (actual time=0.041..4.276 rows=11000 loops=1)
   Filter: (COALESCE(a, 0) = 0)
   Rows Removed by Filter: 1000
 Planning Time: 0.099 ms
 Execution Time: 5.412 ms
(5 rows)

postgres=# explain analyze select * from xxx where a is null or a = 0;
                                              QUERY PLAN                                              
-------------------------------------------------------------------------------------------------------
 Seq Scan on xxx  (cost=0.00..194.00 rows=10167 width=4) (actual time=0.052..5.891 rows=11000 loops=1)
   Filter: ((a IS NULL) OR (a = 0))
   Rows Removed by Filter: 1000
 Planning Time: 0.136 ms
 Execution Time: 7.522 ms
(5 rows)

I think so pattern coalesce(var, X) = X is very common so can be very interesting to support it better.

Regards

Pavel


Re: missing estimation for coalesce function

От
David Fetter
Дата:
On Wed, Nov 27, 2019 at 08:47:56AM +0100, Pavel Stehule wrote:
> Hi
> 
> I have a report from my customer about migration his application from
> Oracle to Postgres.
> 
> The most significant issue was missing correct estimation for coalesce
> function. He had to rewrite coalesce(var, X) = X to "var IS NULL or var =
> X". Then the result was very satisfactory.
> 
> Example:
> 
> create table xxx(a int);
> insert into xxx select null from generate_series(1,10000);
> insert into xxx select 1 from generate_series(1,1000);
> insert into xxx select 0 from generate_series(1,1000);
> analyze xxx;
> 
> postgres=# explain analyze select * from xxx where coalesce(a, 0) = 0;
>                                              QUERY PLAN
> 
> ----------------------------------------------------------------------------------------------------
>  Seq Scan on xxx  (cost=0.00..194.00 rows=60 width=4) (actual
> time=0.041..4.276 rows=11000 loops=1)
>    Filter: (COALESCE(a, 0) = 0)
>    Rows Removed by Filter: 1000
>  Planning Time: 0.099 ms
>  Execution Time: 5.412 ms
> (5 rows)
> 
> postgres=# explain analyze select * from xxx where a is null or a = 0;
>                                               QUERY PLAN
> 
> -------------------------------------------------------------------------------------------------------
>  Seq Scan on xxx  (cost=0.00..194.00 rows=10167 width=4) (actual
> time=0.052..5.891 rows=11000 loops=1)
>    Filter: ((a IS NULL) OR (a = 0))
>    Rows Removed by Filter: 1000
>  Planning Time: 0.136 ms
>  Execution Time: 7.522 ms
> (5 rows)
> 
> I think so pattern coalesce(var, X) = X is very common so can be very
> interesting to support it better.

Better support sounds great!

How specifically might this be better supported? On this relatively
short table, I see planning times considerably longer, I assume
because they need to take a function call into account, and execution
times longer but not all that much longer. I tried with 3 million
rows, and got the representative samples below:

shackle@[local]:5413/ctest(13devel)(149711) # EXPLAIN ANALYZE SELECT * FROM xxx WHERE COALESCE(a, 0)=0;
                                                        QUERY PLAN
 
 

══════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════
 Gather  (cost=1000.00..30391.00 rows=15000 width=4) (actual time=1.315..346.406 rows=999772 loops=1)
   Workers Planned: 2
   Workers Launched: 2
   ->  Parallel Seq Scan on xxx  (cost=0.00..27891.00 rows=6250 width=4) (actual time=0.029..216.419 rows=333257
loops=3)
         Filter: (COALESCE(a, 0) = 0)
         Rows Removed by Filter: 666743
 Planning Time: 0.204 ms
 Execution Time: 389.307 ms
(8 rows)

Time: 391.394 ms

shackle@[local]:5413/ctest(13devel)(149711) # EXPLAIN ANALYZE SELECT * FROM xxx WHERE a IS NULL OR a = 0;
                                                 QUERY PLAN                                                  
═════════════════════════════════════════════════════════════════════════════════════════════════════════════
 Seq Scan on xxx  (cost=0.00..49766.00 rows=995700 width=4) (actual time=0.043..524.401 rows=999772 loops=1)
   Filter: ((a IS NULL) OR (a = 0))
   Rows Removed by Filter: 2000228
 Planning Time: 0.106 ms
 Execution Time: 560.593 ms
(5 rows)

Time: 561.186 ms

Best,
David.
-- 
David Fetter <david(at)fetter(dot)org> http://fetter.org/
Phone: +1 415 235 3778

Remember to vote!
Consider donating to Postgres: http://www.postgresql.org/about/donate



Re: missing estimation for coalesce function

От
Pavel Stehule
Дата:
Hi

čt 28. 11. 2019 v 3:56 odesílatel David Fetter <david@fetter.org> napsal:
On Wed, Nov 27, 2019 at 08:47:56AM +0100, Pavel Stehule wrote:
> Hi
>
> I have a report from my customer about migration his application from
> Oracle to Postgres.
>
> The most significant issue was missing correct estimation for coalesce
> function. He had to rewrite coalesce(var, X) = X to "var IS NULL or var =
> X". Then the result was very satisfactory.
>
> Example:
>
> create table xxx(a int);
> insert into xxx select null from generate_series(1,10000);
> insert into xxx select 1 from generate_series(1,1000);
> insert into xxx select 0 from generate_series(1,1000);
> analyze xxx;
>
> postgres=# explain analyze select * from xxx where coalesce(a, 0) = 0;
>                                              QUERY PLAN
>
> ----------------------------------------------------------------------------------------------------
>  Seq Scan on xxx  (cost=0.00..194.00 rows=60 width=4) (actual
> time=0.041..4.276 rows=11000 loops=1)
>    Filter: (COALESCE(a, 0) = 0)
>    Rows Removed by Filter: 1000
>  Planning Time: 0.099 ms
>  Execution Time: 5.412 ms
> (5 rows)
>
> postgres=# explain analyze select * from xxx where a is null or a = 0;
>                                               QUERY PLAN
>
> -------------------------------------------------------------------------------------------------------
>  Seq Scan on xxx  (cost=0.00..194.00 rows=10167 width=4) (actual
> time=0.052..5.891 rows=11000 loops=1)
>    Filter: ((a IS NULL) OR (a = 0))
>    Rows Removed by Filter: 1000
>  Planning Time: 0.136 ms
>  Execution Time: 7.522 ms
> (5 rows)
>
> I think so pattern coalesce(var, X) = X is very common so can be very
> interesting to support it better.

Better support sounds great!

How specifically might this be better supported? On this relatively
short table, I see planning times considerably longer, I assume
because they need to take a function call into account, and execution
times longer but not all that much longer. I tried with 3 million
rows, and got the representative samples below:

shackle@[local]:5413/ctest(13devel)(149711) # EXPLAIN ANALYZE SELECT * FROM xxx WHERE COALESCE(a, 0)=0;
                                                        QUERY PLAN                                                       
══════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════
 Gather  (cost=1000.00..30391.00 rows=15000 width=4) (actual time=1.315..346.406 rows=999772 loops=1)
   Workers Planned: 2
   Workers Launched: 2
   ->  Parallel Seq Scan on xxx  (cost=0.00..27891.00 rows=6250 width=4) (actual time=0.029..216.419 rows=333257 loops=3)
         Filter: (COALESCE(a, 0) = 0)
         Rows Removed by Filter: 666743
 Planning Time: 0.204 ms
 Execution Time: 389.307 ms
(8 rows)

Time: 391.394 ms

shackle@[local]:5413/ctest(13devel)(149711) # EXPLAIN ANALYZE SELECT * FROM xxx WHERE a IS NULL OR a = 0;
                                                 QUERY PLAN                                                 
═════════════════════════════════════════════════════════════════════════════════════════════════════════════
 Seq Scan on xxx  (cost=0.00..49766.00 rows=995700 width=4) (actual time=0.043..524.401 rows=999772 loops=1)
   Filter: ((a IS NULL) OR (a = 0))
   Rows Removed by Filter: 2000228
 Planning Time: 0.106 ms
 Execution Time: 560.593 ms
(5 rows)

Time: 561.186 ms

I didn't thing about rewriting. The correct solution should be via own selectivity function. Now for coalesce is used 5% estimation (like for other functions). Probably it should not be hard code because coalesce is a node already. But it is part of code that I never modified.

Pavel

Best,
David.
--
David Fetter <david(at)fetter(dot)org> http://fetter.org/
Phone: +1 415 235 3778

Remember to vote!
Consider donating to Postgres: http://www.postgresql.org/about/donate

Re: missing estimation for coalesce function

От
Pavel Stehule
Дата:


čt 28. 11. 2019 v 4:48 odesílatel Pavel Stehule <pavel.stehule@gmail.com> napsal:
Hi

čt 28. 11. 2019 v 3:56 odesílatel David Fetter <david@fetter.org> napsal:
On Wed, Nov 27, 2019 at 08:47:56AM +0100, Pavel Stehule wrote:
> Hi
>
> I have a report from my customer about migration his application from
> Oracle to Postgres.
>
> The most significant issue was missing correct estimation for coalesce
> function. He had to rewrite coalesce(var, X) = X to "var IS NULL or var =
> X". Then the result was very satisfactory.
>
> Example:
>
> create table xxx(a int);
> insert into xxx select null from generate_series(1,10000);
> insert into xxx select 1 from generate_series(1,1000);
> insert into xxx select 0 from generate_series(1,1000);
> analyze xxx;
>
> postgres=# explain analyze select * from xxx where coalesce(a, 0) = 0;
>                                              QUERY PLAN
>
> ----------------------------------------------------------------------------------------------------
>  Seq Scan on xxx  (cost=0.00..194.00 rows=60 width=4) (actual
> time=0.041..4.276 rows=11000 loops=1)
>    Filter: (COALESCE(a, 0) = 0)
>    Rows Removed by Filter: 1000
>  Planning Time: 0.099 ms
>  Execution Time: 5.412 ms
> (5 rows)
>
> postgres=# explain analyze select * from xxx where a is null or a = 0;
>                                               QUERY PLAN
>
> -------------------------------------------------------------------------------------------------------
>  Seq Scan on xxx  (cost=0.00..194.00 rows=10167 width=4) (actual
> time=0.052..5.891 rows=11000 loops=1)
>    Filter: ((a IS NULL) OR (a = 0))
>    Rows Removed by Filter: 1000
>  Planning Time: 0.136 ms
>  Execution Time: 7.522 ms
> (5 rows)
>
> I think so pattern coalesce(var, X) = X is very common so can be very
> interesting to support it better.

Better support sounds great!

How specifically might this be better supported? On this relatively
short table, I see planning times considerably longer, I assume
because they need to take a function call into account, and execution
times longer but not all that much longer. I tried with 3 million
rows, and got the representative samples below:

shackle@[local]:5413/ctest(13devel)(149711) # EXPLAIN ANALYZE SELECT * FROM xxx WHERE COALESCE(a, 0)=0;
                                                        QUERY PLAN                                                       
══════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════
 Gather  (cost=1000.00..30391.00 rows=15000 width=4) (actual time=1.315..346.406 rows=999772 loops=1)
   Workers Planned: 2
   Workers Launched: 2
   ->  Parallel Seq Scan on xxx  (cost=0.00..27891.00 rows=6250 width=4) (actual time=0.029..216.419 rows=333257 loops=3)
         Filter: (COALESCE(a, 0) = 0)
         Rows Removed by Filter: 666743
 Planning Time: 0.204 ms
 Execution Time: 389.307 ms
(8 rows)

Time: 391.394 ms

shackle@[local]:5413/ctest(13devel)(149711) # EXPLAIN ANALYZE SELECT * FROM xxx WHERE a IS NULL OR a = 0;
                                                 QUERY PLAN                                                 
═════════════════════════════════════════════════════════════════════════════════════════════════════════════
 Seq Scan on xxx  (cost=0.00..49766.00 rows=995700 width=4) (actual time=0.043..524.401 rows=999772 loops=1)
   Filter: ((a IS NULL) OR (a = 0))
   Rows Removed by Filter: 2000228
 Planning Time: 0.106 ms
 Execution Time: 560.593 ms
(5 rows)

Time: 561.186 ms

I didn't thing about rewriting. The correct solution should be via own selectivity function. Now for coalesce is used 5% estimation (like for other functions). Probably it should not be hard code because coalesce is a node already. But it is part of code that I never modified.

but support functions can be used


postgres=# create table test(id integer);
CREATE TABLE
postgres=# insert into test select generate_series(1,100000);
INSERT 0 100000
postgres=# insert into test select null from generate_series(1,1000);
INSERT 0 1000
postgres=# analyze test;
ANALYZE
postgres=# create index on test(id);
CREATE INDEX
postgres=# explain analyze select * from test where coalesce(id, 10) = 10;
┌───────────────────────────────────────────────────────────────────────────────────────────────────────┐
│                                              QUERY PLAN                                               │
╞═══════════════════════════════════════════════════════════════════════════════════════════════════════╡
│ Seq Scan on test  (cost=0.00..1708.50 rows=505 width=4) (actual time=0.062..18.370 rows=1001 loops=1) │
│   Filter: (COALESCE(id, 10) = 10)                                                                     │
│   Rows Removed by Filter: 99999                                                                       │
│ Planning Time: 37.212 ms                                                                              │
│ Execution Time: 18.479 ms                                                                             │
└───────────────────────────────────────────────────────────────────────────────────────────────────────┘
(5 rows)


postgres=# explain analyze select * from test where id is null or id = 10;
┌────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┐
│                                                           QUERY PLAN                                                           │
╞════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════╡
│ Bitmap Heap Scan on test  (cost=24.30..482.35 rows=964 width=4) (actual time=0.197..0.334 rows=1001 loops=1)                   │
│   Recheck Cond: ((id IS NULL) OR (id = 10))                                                                                    │
│   Heap Blocks: exact=5                                                                                                         │
│   ->  BitmapOr  (cost=24.30..24.30 rows=964 width=0) (actual time=0.189..0.189 rows=0 loops=1)                                 │
│         ->  Bitmap Index Scan on test_id_idx  (cost=0.00..19.52 rows=963 width=0) (actual time=0.170..0.170 rows=1000 loops=1) │
│               Index Cond: (id IS NULL)                                                                                         │
│         ->  Bitmap Index Scan on test_id_idx  (cost=0.00..4.30 rows=1 width=0) (actual time=0.019..0.019 rows=1 loops=1)       │
│               Index Cond: (id = 10)                                                                                            │
│ Planning Time: 0.090 ms                                                                                                        │
│ Execution Time: 0.413 ms                                                                                                       │
└────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┘
(10 rows)

There can be strong benefit from replacement if indexes are used.


Pavel

Best,
David.
--
David Fetter <david(at)fetter(dot)org> http://fetter.org/
Phone: +1 415 235 3778

Remember to vote!
Consider donating to Postgres: http://www.postgresql.org/about/donate

Re: missing estimation for coalesce function

От
Laurenz Albe
Дата:
On Wed, 2019-11-27 at 08:47 +0100, Pavel Stehule wrote:
> The most significant issue was missing correct estimation for coalesce function.
> He had to rewrite coalesce(var, X) = X to "var IS NULL or var = X".
> Then the result was very satisfactory.
> 
> postgres=# explain analyze select * from xxx where coalesce(a, 0) = 0;
>                                              QUERY PLAN                                             
> ----------------------------------------------------------------------------------------------------
>  Seq Scan on xxx  (cost=0.00..194.00 rows=60 width=4) (actual time=0.041..4.276 rows=11000 loops=1)

I think that this is asking for a planner support function:
https://www.postgresql.org/docs/current/xfunc-optimization.html

Yours,
Laurenz Albe




Re: missing estimation for coalesce function

От
Pavel Stehule
Дата:


čt 28. 11. 2019 v 15:51 odesílatel Laurenz Albe <laurenz.albe@cybertec.at> napsal:
On Wed, 2019-11-27 at 08:47 +0100, Pavel Stehule wrote:
> The most significant issue was missing correct estimation for coalesce function.
> He had to rewrite coalesce(var, X) = X to "var IS NULL or var = X".
> Then the result was very satisfactory.
>
> postgres=# explain analyze select * from xxx where coalesce(a, 0) = 0;
>                                              QUERY PLAN                                             
> ----------------------------------------------------------------------------------------------------
>  Seq Scan on xxx  (cost=0.00..194.00 rows=60 width=4) (actual time=0.041..4.276 rows=11000 loops=1)

I think that this is asking for a planner support function:
https://www.postgresql.org/docs/current/xfunc-optimization.html

Probably it needs more work - currently this support is for SRF function or for boolean functions.

On second hand coalesce is not function - it's expr node. Originally I though so selectivity function can be enough. Now I think so it is not enough. It is similar to DISTINCT FROM operator.

So some plan can look like

1. introduction isnull_or_eq operator
2. this operator can be used for indexscan too
3. implement selectivity function for this operator (and maybe for coalesce)
4. translate COALESCE(var, const) = const --> var isnull_or_eq const

I am not sure if @4 is possible or if some more complex transformations are possible COALESCE(var1, var2) = var2

But what I read about it - MSSQL and Oracle has does this optimization

Regards

Pavel



Yours,
Laurenz Albe